Search results for "Small heterodimer partner"

showing 3 items of 3 documents

Repression of the nuclear receptor small heterodimer partner by steatotic drugs and in advanced nonalcoholic fatty liver disease.

2015

The small heterodimer partner (SHP) (NR0B2) is an atypical nuclear receptor that lacks a DNA-binding domain. It interacts with and inhibits many transcription factors, affecting key metabolic processes, including bile acid, cholesterol, fatty acid, and drug metabolism. Our aim was to determine the influence of steatotic drugs and nonalcoholic fatty liver disease (NAFLD) on SHP expression and investigate the potential mechanisms. SHP was found to be repressed by steatotic drugs (valproate, doxycycline, tetracycline, and cyclosporin A) in cultured hepatic cells and the livers of different animal models of NAFLD: iatrogenic (tetracycline-treated rats), genetic (glycine N-methyltransferase-defi…

MaleTranscription GeneticThiazepinesResponse elementReceptors Cytoplasmic and NuclearBiologyMiceNon-alcoholic Fatty Liver DiseaseCyclosporin amedicineCCAAT-Enhancer-Binding Protein-alphaAnimalsHumansProtein kinase APromoter Regions GeneticTranscription factorCells CulturedPharmacologyMitogen-Activated Protein Kinase 1KinaseValproic AcidFatty liverTetracyclinemedicine.diseaseFatty LiverDoxycyclineCancer researchSmall heterodimer partnerCyclosporineMolecular MedicineSignal transductionSignal TransductionMolecular pharmacology
researchProduct

Redox signaling in acute pancreatitis

2015

Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On th…

NecrosisGSH reduced glutathioneSTAT3 signal transducer and activator of transcription 3ERK extracellular signal-regulated kinasesClinical BiochemistryCCK cholecystokininTRAFs TNF receptor associated factorsReview ArticleIκB kinasePharmacologymedicine.disease_causeBiochemistrySHP small heterodimer partnerSTIM1 stromal interaction molecule 1chemistry.chemical_compoundHATs histone acetyltransferasesMedicineASK1GCL glutamate cysteine ligaseTNF-α tumor necrosis factor alphaIKK IκB kinaseNOS nitric oxide synthaseAcute inflammationHIF hypoxia inducible factorlcsh:QH301-705.5NF-κB nuclear factor kappa BDAMPs damage-associated molecular pattern moleculeslcsh:R5-920biologyGSSG oxidized glutathioneNF-kappa BNLRs nucleotide-binding oligomerization domain (NOD) like receptorsTRADD tumor necrosis factor receptor type 1-associated DEATH domain proteinTRPC3 transient receptor potential channel 3VEGF vascular endothelial growth factorGlutathioneTNFR tumor necrosis factor receptorHMGB1 high-mobility group Box 1 proteinIP3R inositol 145-trisphosphate receptor type 3VCAM-1 Vascular Cell adhesion protein 1Acute DiseaseJNK c-Jun N-terminal kinaseAcute pancreatitisTLRs toll-like receptorsmedicine.symptomlcsh:Medicine (General)Oxidation-ReductionAP-1 activator protein-1Signal TransductionmRNA messenger ribonucleic acidHMGB1ASC apoptosis-associated speck-like protein containing a carboxy-terminal CARDRNS reactive nitrogen speciesPTPs protein tyrosine phosphatasesROS reactive oxygen speciesNADH nicotinamide adenine dinucleotidepHe extracellular pHFAEE fatty acid ethyl estersAP acute pancreatitisHumansXanthine oxidaseCBP CREB-binding proteinRyR endoplasmic reticulum membrane ryanodine receptorsMDA malondialdehydeNO nitric oxideXO xanthine oxidaseASK1 apoptosis signal-regulating kinase-1business.industryOrganic ChemistryAutophagyNADPH nicotinamide adenine dinucleotide phosphateHDACs histone deacetylasesmedicine.diseaseCARS compensatory anti-inflammatory response syndromeXDH xanthine dehydrogenaseIL interleukinIκB inhibitor of kappa BAcute pancreatitisETC Electron transport chainPancreatitisMKPs MAPK phosphatasesSAP severe acute pancreatitischemistrylcsh:Biology (General)DTT dithiothreitolOxidative stressNAC N-acetyl cysteineImmunologybiology.proteinCalciumLysosomesReactive Oxygen SpeciesbusinessMAPK mitogen-activated protein kinaseOxidative stressERCP endoscopic retrograde cholangiopancreatographyRedox Biology
researchProduct

Species-specific mechanisms for cholesterol 7alpha-hydroxylase (CYP7A1) regulation by drugs and bile acids.

2005

The gene encoding cholesterol 7alpha-hydroxylase (CYP7A1) is tightly regulated in order to control intrahepatic cholesterol and bile acid levels. Ligands of the xenobiotic-sensing pregnane X receptor inhibit CYP7A1 expression. To retrace the evolution of the molecular mechanisms underlying CYP7A1 inhibition, we used a chicken hepatoma cell system that retains the ability to be induced by phenobarbital and other drugs. Whereas bile acids regulate CYP7A1 via small heterodimer partner and liver receptor homolog-1, mRNA expression of these nuclear receptors is unchanged by xenobiotics. Instead, drugs repress chicken hepatic nuclear factor 4alpha (HNF4alpha) transcript levels concomitant with a …

Receptors Steroidmedicine.drug_classMolecular Sequence DataBiophysicsReceptors Cytoplasmic and NuclearBiologyIn Vitro TechniquesCholesterol 7 alpha-hydroxylaseBiochemistryGene Expression Regulation EnzymologicBile Acids and SaltsMiceSpecies SpecificitymedicineAnimalsHumansRNA MessengerCholesterol 7-alpha-HydroxylaseMolecular BiologyCells CulturedMice KnockoutPregnane X receptorBile acidLiver receptor homolog-1Pregnane X ReceptorPhosphoproteinsRecombinant ProteinsDNA-Binding ProteinsBiochemistryNuclear receptorHepatocyte Nuclear Factor 4PhenobarbitalSmall heterodimer partnerHepatocytesFarnesoid X receptorSignal transductionChickensSignal TransductionTranscription FactorsArchives of biochemistry and biophysics
researchProduct